Let Us Build a Custom Installation Kit for You

phoenix1000-catWhether you have a diesel powered pick-up truck, a Freightliner, RV or Motorhome, the price associated with operating these vehicles is not getting any cheaper. The rising costs of diesel fuel; combined with increasing governmental regulations and a focus on social responsibility to reduce vehicle emissions have stimulated several inventors to attempt to create solutions for one – or maybe two of these growing concerns. Traditionally, reducing emissions and increasing fuel economy often comes with a drawback – reduced engine performance and efficiency.

The Phoenix Diesel Fuel Converter is a coolant to catalyst fuel system. Metal tubes encased within the Phoenix Diesel Fuel Converter are configured to treat hydrocarbon fuel as it passes through the system while being in contact with a proprietary blend of catalyst. By direct contact with the catalyst – the carbon bonds within the diesel fuel are broken, allowing more of the fuel to become burnable in the short amount of time once fuel is in the combustion chamber.

Listen to the testimonial of Mr. Bob Lawson, the Business Manager for NHRA Drag Racing Team – Kalitta Motorsports on how the Phoenix Diesel Fuel Converter has helped them save up to 18 percent in fuel economy on their fleet of 7 big rig trucks.

We work with personal diesel powered truck and car owners, private trucking owner / operators, large commercial fleets, US Government and State agencies, motorsports teams and commercial contractors.

Contact our team today to inquire about which Phoenix Diesel Fuel Converter is best suited for your application. We look forward to speaking with you soon.


THE USE OF PHOENIX ON DIESEL ENGINES


A 90% reduction in emissions is equivalent to 13.4% reduction in fuel consumption by the engine

Walter R. May and Edward A. Hirs, III

Catalyst for Improving the Combustion Efficiency of Petroleum Fuels in Diesel Engines, SFA International, Inc. and FuelSpec Chemicals LLC


Below are detailed diesel engine test results.

Click here to view Particulate Matter Testing Results
PARTICULATE MATTER TESTING OF STANDARD FORWARDING, LLCTRUCKS WITH INSTALLATION OF CFT DEVICES FROM CATALYZED FUEL TECHNOLOGIES, LLC

NOTE: BOTH TRUCKS TESTED WERE SELECTED BY TRAVIS HINGTGEN, FLEET AND MAINTENANCE DIRECTOR, STANDARD FORWARDING, LLC.

UNIT 467 2001 MACK CH613 UNIT 425 2005 MACK CXN613

BOTH VEHICLES ARE HIGHER MILEAGE CLASS 8 TRUCKS, ARE IN GOOD RUNNING CONDITION AND HAVE BEEN WELL MAINTAINED.

PRE CFT DEVICE TESTING: BEFORE THE CFT UNITS WERE INSTALLED IN THE FUEL SYSTEM OF EITHER TRUCK A PARTICULATE MATTER (PM) TEST WAS PERFORMED USING A WAGNER PM TESTER MODEL #6500. THIS TEST IS PERFORMED TO PROVIDE A BASE PM NUMBER TO COMPARE THE RESULTS OF INSTALLING THE CFT UNIT. SAID TESTING WAS PERFORMED BY SCOTT TAUCHER, CATALYZED FUEL TECHNOLOGIES LLC, AND WITNESSED BY SEVERAL TECHNICIANS OF STANDARD FORWARDING LLC.

EACH TEST WAS PERFORMED EXACTLY THE SAME.

TESTING WAS DONE WITH ENGINES AT FULL OPERATING TEMPERATURE, PRIOR TO TESTING ENGINES ARE HELD AT 1,500 RPM’s FOR 30 SECONDS TO CLEAR THE EXHAUST.

ONCE THE ENGINES ARE TURNED OFF THE ANALYZER IS CALIBRATED TO THE EXHAUST SIZE AND ENGINES’ HORSE POWER THAN ZEROED THEN A LIGHT REFLECTER SENSOR IS PLACED AT THE OPENING OF THE EXHAUST.

ONCE ALL THE ABOVE STEPS ARE COMPLETED, THE ENGINE IS RESTARTED AND THE ACCELERATOR IS PRESSED TO THE FLOOR FOR 3 SECONDS MAKING SURE THE ENGINE REACHES THE GOVERNOR RPM CONTROL THEN RELEASED. THIS STEP IS REPEATED 3 TIMES, EACH TIME THE ANALYZER RECORDS THE AMOUNT OF PM PRESENT AT THE HIGHEST PEAK. THE CFT DEVICE WAS INSTALLED ON BOTH TRUCKS ON OCTOBER 9, 2013 AND A BASE PM READING WAS TAKEN.

NOTE: DUE TO THE WEATHER CHANGE ABOUT TWO WEEKS INTO THE TESTING STANDARD FORWARDING LLC WAS FORCED TO CHANGE FROM CLEAN BURNING SOYBEAN B11 DIESEL TO STRAIGHT CRUDE OIL DIESEL WITH ANTI-GEL ADDITIVES. CHANGING OF THE FUEL AS WITH THE COLDER AIR TEMPERATURE WOULD NORMALLY CAUSE A RISE IN THE PM READING, APPROXIMATELY 5 TO 10% RANGE.

THE DREAM SCENARIO IS TO ALWAYS PERFORM THE TEST THE EXACT SAME WAY WITHOUT ANY ALTERATIONS TO THE TRUCK OR THE FUEL THROUGHOUT THE TESTING PERIOD

AFTER INSTALLATION OF CFT DEVICE TESTING: NOVEMBER 11, 2013 – THE FIRST READINGS WERE TAKEN AND A REDUCTION OF PM WAS FOUND ON BOTH TRUCKS- TRUCK 425 A 100% REDUCTION AND TRUCK 467 A 37% REDUCTION.

DECEMBER 09, 20 13 – THE SECOND READINGS WERE TAKEN – TRUCK 425 RETAINED 0 PM AND TRUCK 467 SHOWED ANOTHER 26% REDUCTION FOR A TOTAL OF 63% PM REDUCTION.

PARTICULATE MATTER FROM DIESEL ENGINES IS UNBURNED OR PARTIALLY BURNED FUEL. IT IS THE MOST HARMFUL POLLUTANT PRODUCED FROM DIESEL ENGINES.

CATALYZED FUEL TECHNOLOGIES, LLC MAIN GOAL IS TO REDUCE EXHAUST EMISSIONS. THE CFT DEVICE IS A SYSTEM WHICH ALLOWS THE LEFT OVER FUEL TO BE BURNT IN THE COMBUSTION CHAMBER OF THE ENGINE AND USED INSTEAD OF BEING WASTED AS IT WOULD IN EITHER A FILTER OR NORMAL CATALYST SYSTEM. THIS IS COMPLETED BY USING A CATALYST TYPE FUEL CONVERTER ON THE FUEL ITSELF TO BREAK DOWN THE LARGE CARBON CHAIN HYDRO CARBONS THAT ARE NORMALLY UNUSABLE IN THE COMBUSTION CHAMBER.

BURNING THESE BROKEN LARGE FUEL CHAINS NOT ONLY ALLOWS FOR LOWER PARTICULATE MATTER (PM) (A TYPE OF POLLUTION FROM THE ENGINE) IT ALLOWS FOR WHAT USED TO BE WASTED FUEL TO BE USED FOR POWER AND/OR FUEL ECONOMY.

AS IN MOST CASES A TRUCK SELDOM RUNS THE SAME ROUTE, SAME LOAD AND/OR SAME SPEED WHICH WOULD BE REQUIRED TO TAKE AN ACCURATE TRUE FUEL MILEAGE TEST OVER THE APPROXIMATELY 5,000 MILES IT WOULD TAKE FOR THE FUEL SYSTEM AND COMPUTER SYSTEM TO ADJUST TO THE CHANGE THAT THE CFT DEVICE / FUEL CONVERTER MAKES IN THE FUEL.

IN THE DEVELOPMENT OF THE CFT DEVICE THROUGH TESTING WE HAVE FOUND THAT ANYTIME WE REDUCED EMISSIONS BY A COMPLETE BURNING OF THE FUEL IN THE COMBUSTION CHAMBER (NOT REDUCING IT BY AN EXHAUST FILTER OR SOME OTHER DEVICE MOUNTED TO THE EXHAUST) NOT ONLY DO WE REDUCE POLLUTION BUT WE DECREASE FUEL CONSUMPTION BECAUSE WE ARE NO LONGER WASTING FUEL.

OTHER BENEFITS FROM REDUCING THE PARTICULATE MATTER BY COMPLETE BURNING OF FUEL IS THE COST OF CLEANING THE PARTICULATE MATTER FILTER (MANUALLY AND/OR THRU REGENERATION) AND REDUCING OIL CONTAMINATION. BOTH OF WHICH HELP REDUCE THE CARBON FOOT PRINT WE LEAVE BEHIND.

Standard Forwarding LLC Particulate Matter Test

VID:

Make & Model425 MACK CXN613

VID:

Make & Model 467   MACK CH613Year2005

Year

2001VIN:1M1AK06Y15N004564

VIN:

1M1AA13Y31W137599Testing Date:10/9/2013Testing Date:10/9/2013Testing Time:9:06PMTesting Time:9:19PM   Test 1 0.7

Test 1

  11.8Test 20.6

Test 2

10.6Test 30.6

Test 3

13.5Average0.7

Average

11.9Spread0.1

Spread

2.9TEST REPEATED FOR ACCURACY TEST REPEATED FOR ACCURACY

VID:

Make & Model425 MACK CXN613

VID:

Make & Model 467   MACK CH613Year2005

Year

2001VIN:1M1AK06Y15N004564

VIN:

1M1AA13Y31W137599Testing Date: Testing Time:10/9/2013   9:30PMTesting Date: Testing Time:10/9/2013 11:05PM Test 1 0.6

Test 1

  10.3 Test 20.5

Test 2

11.0Test 30.8

Test 3

11.1Average0.6

Average

10.8Spread0.3

Spread

0.8


NOTES:

THE CFT DEVICES WERE CONNECTED INTO THE FUEL SYSTEM OF BOTH TRUCKS (AFTER THE PARTICULATE MADER SAMPLES WERE TAKEN) THE TRUCKS WERE INSPECTED FOR PROPER MOUNTING, LEAKS AND RETURNED TO THE FLEET FOR USE.


Standard Forwarding LLC Particulate Matter Test


FIRST READING (AFTER INSTALLATION)

VID: 425Make & Model MACK CXN613Year 2005 VIN: 1M1AK06Y15N004564 Testing Date: 11/11/2013 Testing Time: 3:43PM Test 1 0.9 Test 2 0.0 Test 3 0.0 Average 0.3 Spread 0.9 VID:Make & ModelYear VIN: Testing Date: Testing Time:Test 1 Test 2 Test 3 Average Spread
NOTES:As the results of this test are low and there is a large spread for the year and make of thistruck a second test was performedTesting Date: 11/11/2013 Testing Time: 3:51PM Test 1 0.0 Test 2 0.0 Test 3 0.0 Average 0.0 Spread 0.0 NOTES:N/A
NOTES:With the results of the 2nd test showing all zeros the analyzer was checked for proper function& recalibrated with the aid of Standard Forwarding LLC technicians.Testing Date: 11/11/2013 Testing Time: 4:12PM Test 1 0.0 Test 2 0.0 Test 3 0.0 Average 0.0 Spread 0.0 NOTES:N/A
NOTES:After calibration 3rd test results were the same, allzeros. NOTES:N/A

Standard Forwarding LLC Particulate Matter Test


SECOND READING (AFTER INSTALLATION)

VID:Make & ModelYear VIN: Testing Date: Testing Time: Test 1 Test 2 Test 3 Average Spread NOTES: N/A Testing Date: Testing Time: Test 1 Test 2 Test 3 Average Spread NOTES: N/A 425MACK CXN6132005 1M1AK06Y15N004564 12/9/2013 6:26PM 0.0 0.0 0.0 0.0 0.0     12/9/2013 6:41PM 0.0 0.0 0.0 0.0 0.0
VID:Make & ModelYear VIN: Testing Date: Testing Time: Test 1 Test 2 Test 3 Average Spread NOTES: N/A Testing Date: Testing Time: Test 1 Test 2 Test 3 Average Spread NOTES: N/A 467MACK CH6132001 1M1AA13Y31W137599 12/9/2013 6:01PM 5.8 4.3 4.7 4.8 0.8     12/9/2013 6:05PM 4.5 5.7 4.9 5.1 1.2

std_fwd_pre_cft_1 std_fwd_post_cft_month_1 std_fwd_post_cft_month_2 std_fwd_sigs

Catalyst for Improving the Combustion Efficiency of Petroleum Fuels in Diesel Engines

Walter R. May, SFA International, Inc., Houston, Texas, U.S.A. and Edward A. Hirs, III, FuelSpec Chemicals LLC., Houston, Texas, U.S.A.

Presented to the 11th Diesel Engine Emissions Reduction Conference, August 21-25, 2005, Chicago, IL

Abstract

In 1996 an oil-soluble organo-metallic iron combustion catalyst was developed for use in Siemens-Westinghouse 501 D-5 104 MW combustion turbine engines.  The product also included oil-soluble magnesium to reduce vanadium deposits and corrosion.  This product resulted in significant reduction of smoke in the exhaust of engines operating in steady state and non-equilibrium start-up conditions.  The overall effects were greater than predicted from the literature.

We extended this work to steam boilers and compression-ignited reciprocating engines.  We have found that the iron-magnesium catalyst when added to Diesel and heavy fuel oil supplies, promotes complete and more efficient combustion in the engine, resulting in increased power, improved fuel economy and radically reduced smoke emission.  Certain metals, including Mn, Fe, Cu, Ba, Ce and Pt, are known to have catalytic activity in combustion processes.  The iron-magnesium combination acts synergistically to give  greater activity than expected.

This paper presents data from tests conducted by a combustion turbine engine manufacturer and customer, a government testing laboratory and independent fleet tests.  A mechanism for the catalysis is proposed.

Earlier papers presented on this subject are available from the SFA International web site at www.SFAInternational.com.1,2

Initial Application in Combustion Turbines

In 1996, Siemens Westinghouse began start-up of a new power plant at Hanwha Energy in Inchon, Korea.  There were initially three model 501 D5 104 MW combustion turbines with nine more in process of installation.  The economics of the plant were based on use of low sulfur waxy residual (LSWR) fuel oil from the Hanwha refinery adjacent to the power plant.  Particulate matter in the exhaust was 120 – 150 mg./cu. M. exceeding the 60 mg./cu. M. requirement at the time.  This requirement was reduced to 40 mg./cu. M. in 1998.  Westinghouse began an investigation into the use of fuel additives containing combustion catalysts to solve the problem.  This work was reported by Rising in 1997.3  SFA International, Inc. was invited to participate in this work. Several metals are known to catalyze combustion of hydrocarbon fuels.  These metals include manganese, iron, copper, barium, cerium, calcium and platinum.  Reports in the literature indicate that 50% reduction in carbonaceous matter in the exhaust is the limit of effectiveness of these catalysts.4  There are positives and negatives to using these various metals.  Manganese, while an effective catalyst, interferes with inhibition of vanadium by magnesium.5  Iron is thought to catalyze formation of sulfur trioxide leading to sulfuric acid formation limiting use to low sulfur fuels.  Copper, barium and calcium are less effective and water-soluble salts of barium are highly toxic.  Cerium and platinum are very expensive.  It was decided that iron was the best choice for the catalyst. An oil-soluble iron carboxylate was developed that was miscible in the fuel and could be combined with oil-soluble over-based magnesium used to inhibit vanadium in the fuel.  This was a 6.0% oil-soluble iron-napthenate product.  Particulate matter was reduced from 120-150 mg./cu. M. to <60 which met the initial Korean Ministry of Environment requirement in 1996-98.  Westinghouse and Hanwha measured the data summarized in Table 1. The second set of turbines came on line later in 1996 and testing continued with the catalyst in six units.  Table 2 presents data taken between October 31 and Dec. 26, 1996 under varying loads and percents distillate oil in the LSWR fuel.  These data demonstrated that <60 mg./M.3 could be achieved with 0% distillate oil and less than full load – see unit 3 data.  The data remained above 40 mg./M.3 in most cases. This work demonstrated that (1) lower particulates are found at high load, (2) distillate fuel yielded significantly lower particulates than LSWR residual fuel, and blending small amounts of distillate into the LSWR significantly reduced particulates and (3) the reduction of particulates was proportional to the concentration of catalyst. The remaining turbines came on line in 1997 raising the total to 12 units.  Heat recovery steam generators (HRSG) units were installed and the plant capacity increased to 1,800 MW.  Dust loadings as low as 20 mg./M.3 at 40 ppm Fe were measured indicating more than 80% reduction in particulate loading.  The Korean Ministry of Environment reduced the particulate level requirement to 40 mg./cu. M. in 1998.  We were able to meet this requirement until mid-1998 when the Korean Ministry of Environment proscribed use of the fuel in the Province of Seoul.  This plant now operates on liquefied natural gas.

Combustion Turbines – Hyundai Heavy Industries, Ltd., Daeson, Korea

Hyundai Heavy Industries Petroleum Subsidiary built a new refinery at Daeson.  This refinery included an on-site power plant for the refinery and local area with four Westinghouse 501 D-5 104 MW combustion turbines similar to those at Hanwha’s Inchon Plant.  The fuel was a similar LSWR material although derived from Chinese crude oil rather than Indonesian in the case of Hanwha.  Both SFA International, Inc. and a competitor competed for this business.  The competitor introduced a dispersion type product with 15% iron and 2% Mg that was extensively tested.  The results were unusual as indicated in Figure 1.  The product shows a minimum at 45 ppm Fe with strong peaks on both sides.  These data are not consistent with classical laws of catalysis. SFA developed a colloidal dispersion product with high iron concentration.  We found a dosage curve similar to that at Hanwha Energy shown in Figure 1 that follows classical laws of catalysis.  SFA’s FuelSpec® 118-1502 has shown lower particulate matter over the dosage range than competitor’s product.  SFA’s FuelSpec® 118-1502 has an unusually small average particle size of 0.007 µm compared with average particle size of 0.05 µm for the competitor’s product shown in Figure 2.  We believe that the smaller particle size results in higher activity.  We do not have an explanation for the fact that the competitor’s product activity is not proportional to concentration other than the particle size. A summary of data for 2004 is presented in Table 3.  We have successfully reduced emissions by 90 % at 50 ppm iron dosage rate for a two period from mid 2003.

Low Pressure Boiler Application

The Korean Ministry of Environment required that the additive was tested in a government operated laboratory at the Korean Institute for Energy Research (KIER) to verify that it would function as required and not create any additional environmental problems.  This work was carried out in a low-pressure test boiler at 50% and 75% loads. LSWR fuel from the Hyundai Daeson Refinery was used in the test.  The data are presented in Table 4.  These data are averages of up to 10 tests under each condition.  The data demonstrate that SFA’s FuelSpec® 118-1502 combustion catalyst reduces emissions by 84.3 and 89.1% respectively at 50% and 75% loads.  This compares with tests presented in Table 5 for the competitor’s product one year earlier.  We have no explanation as to why FuelSpec® 118-1502 performed better than the competitor’s product at 50% load and compared similarly at 75% load.  The tests were carried out eleven months apart on different fuel samples. The reductions were similar to those observed in combustion turbine exhausts at Hanwha and Hyundai.  There are no data in the literature that give similar reductions of particulate matter in boiler emissions.

Application in Reciprocating Engines

Reciprocating engines, whether spark-ignited or compression-ignited, represent a different set of problems from combustion turbines, steam boilers and industrial process heaters.  Reciprocating engines have a more complex system of pistons and valves subject to abrasive wear and problems with deposit build-up and corrosion.  SFA International has treated Wärtsilla V 32 18-cylinder 8 MW engines at the Coastal Power Plant at Nejapa, El Salvador.  That experience indicated that over-based oil-soluble magnesium fuel additives could be used to inhibit vanadium deposits and prevent corrosion on piston crowns and valve seats.  It also reduced corrosion and failure of turbocharger power rotors.  There were no examples to our knowledge of iron- magnesium fuel additives used in automotive high-speed (4,000 rpm) compression- ignited engines used in transportation applications. In 2002, a KIA 1.6 liter Diesel truck used at the Emission Control Products WLL blend plant and warehouse in Bahrain had a severe emission problem.  It would not pass inspection for annual renewal of registration.  It was suggested that the oil-soluble iron combustion catalyst combined with oil-soluble over-based magnesium might alleviate the emission problem so that the vehicle would pass inspection.  The product was introduced into fuel at the rate of 30 ppm iron.  A reduction of emissions was noted visually.  The dosage level was increased 50 ppm.  Emissions were visually eliminated and the vehicle passed inspection.  More surprisingly, the driver of the vehicle reported that it had the power of a new truck. Following this observation, an owner of a bus fleet in Bahrain agreed to test in six vehicles over a period of about 8 weeks.  We reformulated the fuel additive so that 500 ml. of additive achieved 50 ppm iron and 10 ppm magnesium in 100 liters fuel.  This additive was a combination of iron salts of 200-240 molecular weight highly oil soluble carboxylic acid and over-based magnesium oxide suspended in a carboxylic acid and sulfonic acid surfactant system.  The product concentration was adjusted with Solvent 150, a highly aromatic solvent with a flash point >60o C.  The fuel additive closely duplicated density and viscosity of the fuel so that mixing and distribution of the metals in the fuel in a homogeneous manner could be easily attained by agitation caused during normal driving conditions. There was no attempt to control driving conditions or duplicate traffic conditions.  The results of this test are given in Table 6.  The six vehicles gave a range of 2.9% to +19.7 % reduction in fuel consumption.  The vehicle with the lowest result was badly in need of major engine maintenance and was using oil heavily.  The other vehicles had 200,000 km or more on the odometer.  All drivers with positive results reported a noted increase in power from the engine. Further tests were carried out on a single vehicle under the auspices of the Automotive Research Association of India (ARAI).  The vehicle was a small Padmini Premier 137D sedan.  The fuel line was attached to a calibrated measuring device so that the fuel use could be accurately measured.  In a relatively short test, a total of some 1,500 km., fuel consumption was decreased 16.1% and 18.7% under city and highway conditions respectively.  These data are presented in Table 7.  The driver also noted an increase in power from the engine. ARAI measured fuel consumption alternatively from carbon dioxide measurements in the exhaust.  They discovered that with catalyst, the same amount of carbon dioxide was in the exhaust (at similar rpm and loads) with and without catalyst although 10% less fuel was passing through the engine.  This test demonstrated that the catalyst promoted much more efficient combustion of the fuel.

 Observations of Catalysis

Hydrocarbon fuels contain a mixture of molecules with varying hydrogen to carbon ratio.  Three examples of combustion reactions are:

 Methane    CH4   +      O2   =  CO2 +    H2O

Aliphatic    -CH2- +  3/2 O2    =  CO2 +    H2O

Asphaltenic    -CH- +    5/4 O2  =  CO2 + ½ H2O

The exact chemical reaction in the combustion process depends on the molecular structure and distribution of the fuel.

In the combustion-ignited reciprocating engine, oxygen present in air is compressed to ignition temperature and fuel is injected.  While the air is in slight excess, it can be safely assumed that a discreet 2nd order reaction is occurring with two distinct reactants, hydrocarbon fuel and oxygen.

This is page 5 out of 20; please click here for the full pdf.

Diesel Engines
Diesel Engines